Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles.
نویسندگان
چکیده
The photothermal effect of Fe3O4 magnetic nanoparticles is investigated for cancer therapy both in vitro and in vivo experiments. Heat is found to be rapidly generated by red and near-infrared (NIR) range laser irradiation of Fe3O4 nanoparticles with spherical, hexagonal and wire-like shapes. These Fe3O4 nanoparticles are coated with carboxyl-terminated poly (ethylene glycol)-phospholipid for enhanced dispersion in water. The surface-functionalized Fe3O4 nanoparticles can be taken up by esophageal cancer cells and do not obviously affect the cell structure and viability. Upon irradiation at 808 nm however, the esophageal cancer cell viability is effectively suppressed, and the cellular organelles are obviously damaged when incubated with the NIR laser activated Fe3O4 nanoparticles. Mouse esophageal tumor growth was found to be significantly inhibited by the photothermal effect of Fe3O4 nanoparticles, resulting in effective tumor reduction. A morphological examination revealed that after a photothermal therapy, the tumor tissue structure exhibited discontinuation, the cells were significantly shriveled and some cells have finally disintegrated.
منابع مشابه
Biocompatible PEGylated Fe3O4 Nanoparticles as Photothermal Agents for Near-Infrared Light Modulated Cancer Therapy
In accordance with the World Cancer Report, cancer has become the leading cause of mortality worldwide, and various therapeutic strategies have been developed at the same time. In the present study, biocompatible magnetic nanoparticles were designed and synthesized as high-performance photothermal agents for near-infrared light mediated cancer therapy in vitro. Via a facile one-pot solvothermal...
متن کاملAn investigation into the photothermal effects of multi- functional gold coated Fe3O4 Nanoparticles in the presence of external magnetic field and NIR laser irradiation on model of melanoma cancer cell line B16F10 in C57BL/6 mice
Introduction: Photothermal therapy using gold nanoshells is one of cancer therapy methods. Gold nanoshells generally consist of a silica core and a thin gold shell. Fe3O4@Au core-shell can be used for magnetic targeted therapy. The objective of this study was investigation of the photothermal effects of magnetically targeted Fe3O4@Au NPs and NIR laser irradiation on model of me...
متن کاملMagnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation.
In this study, the photothermal effect of magnetic nanoparticle clusters was firstly reported for the photothermal ablation of tumors both in vitro in cellular systems but also in vivo study. Compared with individual magnetic Fe3O4 nanoparticles (NPs), clustered Fe3O4 NPs can result in a significant increase in the near-infrared (NIR) absorption. Upon NIR irradiation at 808 nm, clustered Fe3O4 ...
متن کاملEGFR-targeted delivery of DOX-loaded Fe3O4@ polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy
Multifunctional nanocomposites that have multiple therapeutic functions together with real-time imaging capabilities have attracted intensive concerns in the diagnosis and treatment of cancer. This study developed epidermal growth factor receptor (EGFR) antibody-directed polydopamine-coated Fe3O4 nanoparticles (Fe3O4@PDA NPs) for magnetic resonance imaging and antitumor chemo-photothermal thera...
متن کاملNew insight on optical and magnetic Fe3O4 nanoclusters promising for near infrared theranostic applications.
Extensive efforts have been devoted to the development of a new biophotonic system using near infrared (NIR) nano-agents for non-invasive cancer diagnosis and therapy. Here, we developed a simple synthesis reaction of ligands, hydrazine, and iron(ii) chloride to fabricate Fe3O4 cluster-structured nanoparticles (CNPs) with interesting NIR photonics and high magnetization (Ms: 98.3 emu g(-1) and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 34 16 شماره
صفحات -
تاریخ انتشار 2013